Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Magn Reson Imaging ; 58(3): 864-876, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36708267

RESUMO

BACKGROUND: Detecting new and enlarged lesions in multiple sclerosis (MS) patients is needed to determine their disease activity. LeMan-PV is a software embedded in the scanner reconstruction system of one vendor, which automatically assesses new and enlarged white matter lesions (NELs) in the follow-up of MS patients; however, multicenter validation studies are lacking. PURPOSE: To assess the accuracy of LeMan-PV for the longitudinal detection NEL white-matter MS lesions in a multicenter clinical setting. STUDY TYPE: Retrospective, longitudinal. SUBJECTS: A total of 206 patients with a definitive MS diagnosis and at least two follow-up MRI studies from five centers participating in the Swiss Multiple Sclerosis Cohort study. Mean age at first follow-up = 45.2 years (range: 36.9-52.8 years); 70 males. FIELD STRENGTH/SEQUENCE: Fluid attenuated inversion recovery (FLAIR) and T1-weighted magnetization prepared rapid gradient echo (T1-MPRAGE) sequences at 1.5 T and 3 T. ASSESSMENT: The study included 313 MRI pairs of datasets. Data were analyzed with LeMan-PV and compared with a manual "reference standard" provided by a neuroradiologist. A second rater (neurologist) performed the same analysis in a subset of MRI pairs to evaluate the rating-accuracy. The Sensitivity (Se), Specificity (Sp), Accuracy (Acc), F1-score, lesion-wise False-Positive-Rate (aFPR), and other measures were used to assess LeMan-PV performance for the detection of NEL at 1.5 T and 3 T. The performance was also evaluated in the subgroup of 123 MRI pairs at 3 T. STATISTICAL TESTS: Intraclass correlation coefficient (ICC) and Cohen's kappa (CK) were used to evaluate the agreement between readers. RESULTS: The interreader agreement was high for detecting new lesions (ICC = 0.97, Pvalue < 10-20 , CK = 0.82, P value = 0) and good (ICC = 0.75, P value < 10-12 , CK = 0.68, P value = 0) for detecting enlarged lesions. Across all centers, scanner field strengths (1.5 T, 3 T), and for NEL, LeMan-PV achieved: Acc = 61%, Se = 65%, Sp = 60%, F1-score = 0.44, aFPR = 1.31. When both follow-ups were acquired at 3 T, LeMan-PV accuracy was higher (Acc = 66%, Se = 66%, Sp = 66%, F1-score = 0.28, aFPR = 3.03). DATA CONCLUSION: In this multicenter study using clinical data settings acquired at 1.5 T and 3 T, and variations in MRI protocols, LeMan-PV showed similar sensitivity in detecting NEL with respect to other recent 3 T multicentric studies based on neural networks. While LeMan-PV performance is not optimal, its main advantage is that it provides automated clinical decision support integrated into the radiological-routine flow. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Assuntos
Esclerose Múltipla , Substância Branca , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos de Coortes , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
2.
Clin Neuropathol ; 40(1): 17-24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32870144

RESUMO

Methylation profiling has become a mainstay in brain tumor diagnostics since the introduction of the first publicly available classification tool by the German Cancer Research Center in 2017. We demonstrate the capability of this system through an example of a rare case of IDH wildtype glioblastoma diagnosed in a patient previously treated for T-cell acute lymphoblastic leukemia. Our novel in-house diagnostic tool EpiDiP provided hints arguing against a radiation-induced tumor, identified a novel recurrent genetic aberration, and thus informed about a potential therapeutic target.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Aprendizado de Máquina não Supervisionado , Adulto , Variações do Número de Cópias de DNA , Metilação de DNA , Feminino , Humanos
3.
Mult Scler J Exp Transl Clin ; 6(4): 2055217320961409, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33149930

RESUMO

BACKGROUND: To date, little is known about the presence and extent of cerebellar cortical pathology in early stages of MS. OBJECTIVE: The aims of this study were to (i) investigate microstructural changes in the normal-appearing cerebellar cortex of early MS patients by using 7 T MRI and (ii) evaluate the influence of those changes on clinical performance. METHODS: Eighteen RRMS patients and nine healthy controls underwent quantitative T1 and T2* measurement at 7 T MRI using high-resolution MP2RAGE and multi-echo gradient-echo imaging. After subtracting lesion masks, average T1 and T2* maps were computed for three layers in the cerebellar cortex and compared between groups using mixed effects models. RESULTS: The volume of the cerebellar cortex and its layers did not differ between patients and controls. In MS patients, significantly longer T1 values were observed in all vermis cortical layers and in the middle and external cortical layer of the cerebellar hemispheres. No between-group differences in T2* values were found. T1 values correlated with EDSS, SDMT and PASAT. CONCLUSIONS: We found MRI evidence of damage in the normal-appearing cerebellar cortex at early MS stages and before volumetric changes. This microstructural alteration appears to be related to EDSS and cognitive performance.

4.
Invest Radiol ; 54(6): 356-364, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30829941

RESUMO

OBJECTIVES: The aim of this study was to develop a new automated segmentation method of white matter (WM) and cortical multiple sclerosis (MS) lesions visible on magnetization-prepared 2 inversion-contrast rapid gradient echo (MP2RAGE) images acquired at 7 T MRI. MATERIALS AND METHODS: The proposed prototype (MSLAST [Multiple Sclerosis Lesion Analysis at Seven Tesla]) takes as input a single image contrast derived from the 7T MP2RAGE prototype sequence and is based on partial volume estimation and topological constraints. First, MSLAST performs a skull-strip of MP2RAGE images and computes tissue concentration maps for WM, gray matter (GM), and cerebrospinal fluid (CSF) using a partial volume model of tissues within each voxel. Second, MSLAST performs (1) connected-component analysis to GM and CSF concentration maps to classify small isolated components as MS lesions; (2) hole-filling in the WM concentration map to classify areas with low WM concentration surrounded by WM (ie, MS lesions); and (3) outlier rejection to the WM mask to improve the classification of small WM lesions. Third, MSLAST unifies the 3 maps obtained from 1, 2, and 3 processing steps to generate a global lesion mask. RESULTS: Quantitative and qualitative assessments were performed using MSLAST in 25 MS patients from 2 research centers. Overall, MSLAST detected a median of 71% of MS lesions, specifically 74% of WM and 58% of cortical lesions, when a minimum lesion size of 6 µL was considered. The median false-positive rate was 40%. When a 15 µL minimal lesions size was applied, which is the approximation of the minimal size recommended for 1.5/3 T images, the median detection rate was 80% for WM and 63% for cortical lesions, respectively, and the median false-positive rate was 33%. We observed high correlation between MSLAST and manual segmentations (Spearman rank correlation coefficient, ρ = 0.91), although MSLAST underestimated the total lesion volume (average difference of 1.1 mL), especially in patients with high lesion loads. MSLAST also showed good scan-rescan repeatability within the same session with an average absolute volume difference and F1 score of 0.38 ± 0.32 mL and 84%, respectively. CONCLUSIONS: We propose a new methodology to facilitate the segmentation of WM and cortical MS lesions at 7 T MRI, our approach uses a single MP2RAGE scan and may be of special interest to clinicians and researchers.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Neuroimage Clin ; 18: 245-253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868448

RESUMO

White-matter lesion count and volume estimation are key to the diagnosis and monitoring of multiple sclerosis (MS). Automated MS lesion segmentation methods that have been proposed in the past 20 years reach their limits when applied to patients in early disease stages characterized by low lesion load and small lesions. We propose an algorithm to automatically assess MS lesion load (number and volume) while taking into account the mixing of healthy and lesional tissue in the image voxels due to partial volume effects. The proposed method works on 3D MPRAGE and 3D FLAIR images as obtained from current routine MS clinical protocols. The method was evaluated and compared with manual segmentation on a cohort of 39 early-stage MS patients with low disability, and showed higher Dice similarity coefficients (median DSC = 0.55) and higher detection rate (median DR = 61%) than two widely used methods (median DSC = 0.50, median DR < 45%) for automated MS lesion segmentation. We argue that this is due to the higher performance in segmentation of small lesions, which are inherently prone to partial volume effects.


Assuntos
Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Esclerose Múltipla/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Encéfalo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Substância Branca/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...